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SUMMARY

The objective of this task was to improve and extend the use-
fulness of the GTD-MM technique and to determine the limitations of
the method. The GTD-M technique is a method which combines two ap-
plications oriented theories in electromagnetic theory, namely the
geometrical theory of diffraction (GTD) and the method of moments (MM).
As such, the GTD-MM technique is one of several different methods
known as a hybrid technique.

The technical problems addressed in this report are: (1) to over-
come certain restrictions in the original GTD-M work and, (2) to
apply the resulting improved formulation to a three-dimensional problem,
that of calculating the radar crosssection of a three-sided pyramid.
Results were obtained which compared very well with experimental meas-
urements. The results were calculated using a medium sized digital
computer and modest amounts of CPU time.

One of the limitations of the GTD-MM technique discussed in the
present work is the need for an a priori knowledge of the form of
the current in the GTD region of the problem. The work in this report
suggests that this difficulty may in some cases by overcome by using
a suitable series expansion of the current. Future research should
examine this approach from a more general viewpoint and should also
be directed toward the application of the method to geometries of
a three-dimensional nature for which the diffraction coefficient is
unknown.

In general, hybrid techniques hold good promise for eventually
being able to treat radar scattering problems of quite general and
detailed shape. Partly for this reason, a hybrid technique such as
the one reported here, is an important research problem.
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I. INTRODUCTION

In recent years the qeometrical theory of diffraction (GTD), or

one of its improved modern versions such as the uniform theory of dif-

fraction (UTD), has become one of the more useful methods for findinq

solutions to antenna and scattering problems [I1. The applications of

diffraction theories are, however, limited to qeometries for which the

diffraction coefficient is known.

Recently a technique £2] has been developed for extending the

use of the GTD by the method of moments (MM) £3]. In this extended

GTD-MM technique the diffraction coefficient is treated as an unknown,

thereby permitting a larger class of problems to be treated with the

GTD. This technique [2] required special consideration for those cases

where the incident ray was nearly tangent to one of the faces of the

wedge and the results where dependent upon the location of the match

points used. In this paper these difficulties are overcome by usinq

a series of three terms based on approximate expressions for the Fresnel

integral. Thus, a purpose of this paper is to show that accurate results

are obtained with the three term series for all incidence anqles, oartic-

ularly for grazinq incidence, and that these results are independent

of the location of the match points.

Previously, the (improved) extended GTD-MM technique has been

applied to 2-dimensional problems. In this paper we will use the ex-

tended GTD-MM technique to treat a 3-dimensional geometry, the three

sided pyramid. Thus, a second purpose of this paper is to demonstrate

the applicability and limitations of the extended GTD-MM technique to

3-dimensional geometries. As such it represents a first step in ap-

plying the extended GTD-MM technique to 3-dimensional problems.

tmA1i



I. INFINITE WEDGE FORMULATION

The infinite wedge is, of course, a canonical (2-dimensional)

problem in the GTO and UTD. It is used in this paper merely as a basic

geometry to test the methods that follow. That is, the wedge diffraction
coefficient is treated as an unknown and solved for numerically. Once
the numerical diffraction coefficient is obtained, it may then be com-

pared with the known UTD diffraction coefficient or with the classical
(exact) theory solution of the wedge problem (4] to validate the numeri-

cal result.

Consider Figure 1 which shows the surface of a wedge divided into

i ~~~P(P' "'"

AI

MATCH
PO I NTS '

Figure 1. Wedge diffraction geometry used in GTD-MM solution.

two regions. The basic approach here is to use a pulse basis moment

method representation for the current near the diffracting edge (i.e.,

difatn7de(~.



MM region), and GTD current forms outside the moment method region.

Thus, the current in the GTD region is given by

-jGTD = -ji + r + -jd(I

where J', -Jr and d are the currents associated with the incident, reflected

and diffracted fields respectively.

The currents in the MM region are found using the magnetic field

integral equation

= x i ff / (') x V G (p,p') ds' (2)
WEDGE
SURFACE

The current may be represented by the components J in the xy plane

and J in the xz or yz plane as suggested by Figure 2. Thus,
z

(')- z(X,y' )+ -JT(x,y') (3)

J, (p')

nlp

Figure 2. Current of a point p' used in
magnetic integral equation.

Using Equation (3) in Equation (2) we obtain

T~) n xWH(p) -np x "'T'' x VT G(p,p') dc' (4)

3
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and

"jz(P)= np x]:R - n p x z X VT G(P,P') ds'

- j kz np x J'T G(p,p') dc' (5)

where G(p,p') is the two-dimensional Green's function written in terms

of the Hankel function H(2) as
0

1 (2)(kl. ) 6
G(p,p') - H H (k- (6)

4j oT

where kT=k sin$0o. The del operator is qiven by

V =V T + v z = VT + z (7)

and the currents are related to the magnetic field by

Jz = np x HT (8)

j and

"U'T p x z (9)

In the extended GTD-MM technique it is necessary to assume the form

of the diffracted current Ud in Equation (1). In Reference 2 , Burnside,et. al. took the diffracted current to be proportional to e-jkp/ rp.

This is satisfactory except when the shadow boundary of the incident

field is near one wall of the wedge as the authors point out. In this

special case they proposed the series

d= D(n) e jkp (10)

n=O () n

4
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and found that the first two terms gave good results but that the solu-

tion was "somewhat dependent on the locations of the sample (match)

points". The reason they [2) had this sensitivity to match point lo-

cation was that the series in Equation (10) does not adequately repre-

sent the current in the case of grazing incidence. That is to say,

an a priori knowledge of the form of the current was not available in

this instance.

To overcome the difficulties mentioned above, let us examine the

wedge diffraction coefficient in its Fresnel integral form. (We do

this merely to gain sime insight into what the form of the current really

should be. We will not use any of the well-known diffraction coeffi-

cient expressions in the numerical calculations which follow later.)

Consider the wedoe in Fiqure 3a. If the incident ray is in reqion I,

then there are two reflected rays R and R, as shown. The diffracted

current in the x wall can be viewed as beinq qenerated by three rays

as shown in Figure 3b. Thus the diffracted current on each wall will

be the summation of the three currents associated with the three rays

where incidence angles are listed below

xz plane yz plane

1. 0 1. 360 -¢-y

2. 360-o 2. 0-y

3. 360-0-2y 3. ¢+y

We know that each of the three diffracted currents may be written in

Fresnel integral form. Thus, for the wall in the xz plane we have:

lx = D(4) e J eST d(1

/kTP(l-cos¢)

.__



Al

R 0

((C)

Figue 3 Wede rfleciongeomtry
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d +JkTpcos 42&

k1 p (l-cos )

J 0x = Dx(360--2y) e+JkTPcs( +2y) e . (13)

!JkTP(l+cos(0+2y)

Similar expressions can he written for the other wall of the wede.

From [q] it can be shown that a Fresnel inteqral may he arproxi-

mated as follows:

e d (a. + a1F), if jfa 0T (14)

and

j 23 2dT = F ,* if jo >> 1 (15)

where ao, a1 and a2 are coefficients independent of a which may be evalu-

ated from [5].

If none of the 3 rays is near the x axis, then Equation (l5) ap-

plies and we have

d d d d e-Jkx
Jx =  x + x +  3 x 0  x (16)

as we would expect. On the other hand, if any one of the three rays

is near the x-axis, then either kTx(l+coso)<<l due to € belnq close

to 1800, or kTx(l+cos(O+py))<<l due to (0+2y) hein close to 1800.

In this case, since some of the rays are near qrazinq and some are not,

both Equations (14) and (15) apply and we must write

.(7



d-DkTX

x lx 2x 3 x -

+ D~o ejk Tx + D(l) eiJkTx 47 . (17)x x

The superscript on the diffraction coefficients is associated with the

value of n for 1
(Fx)-n

We could reach the same conclusion given by Equation (17) by ex-

amininq the Kouyoumjian-Pathak diffraction coefficient [1] or the spectral

Theory of Diffraction work of Mittra, et al. [6]. For example, in the

former, for €=0, a+(-V)=a'(¢')=1+cosV and the four terms in the dif-

fraction coefficient reduce to three. Each of those three terms may

he identified with one of the terms in Equation (17).

Equation (17) is valid for all values of x except near the source

of diffraction where the form of the current is not known. Therefore

Equation (17) applies when x > minimum value of either px or p where,

from the conditions discussed between Equations (16) and (17), we obtain

x
1 4(l+cos) (18)

and

* x = A(19)
P2 41l+cos(+2y)]

Thus, the approximation of the total current on the x-axis will be

N x p(x.Xm , O<xqmin(o,p )l

m=l
ix =

i r + J(n) eikTxX XS min( xp), X.<x (2o)
n=-I x V ) n  2

where P(x-x m ) is a pulse function with complex coefficient am.

8



The same procedure can be used to write an expression for the

current on the other face of the wedge. Then, following the same pro-

cedure as given in (2) we can solve for the unknown pulse weights am

and the unknown diffraction coefficients D(n ) and D(n), except that

there will be 3 match points on each face of the wedge in the GTD region

instead of only one or two as in [2]. Therefore the system of equations

to be solved will be at most of order 2N+6 where N will typically be

a small number (i.e., 2 or 3 or 4).

III. INFINITE WEDGE RESULTS

Results have been run for a variety of incidence angles from qrazing

to normal incidence and for wedges with a variety of interior wedge

angles. In all cases the three term series in Equation (17) yields

results which are in excellent agreement with the exact classical theory

[ 4). We will discuss one typical case here. Consider Figure 4 which

shows a plane wave incident on a 300 wedge with the electric field

perpendicular to the edge of the wedge. Two results are shown, one

when the wave is 50 from grazing upon the y' wall and the other when

the wave is 50 from grazing upon the x wall. Both results are in per-

fect agreement with the exact theory.

The results in Figure 4 could have been generated by using fewer

than 6 unknowns in the two GTD regions. That is, in the .=1550 case

where no rays are close to tangency with the x wall, the D(O) and D(x
terms could be omitted. Indeed the computer print out shows them to

be relatively unexcited. Similarly, for the =175 ° case the D(O) and

O ) terms could be omitted since no rays are close to tangency with

the y' wall. Conversely, if any of the essential terms are omitted,

incorrect results will be obtained for the currents on the faces of

the wedqe for those cases where there are rays close to tangency with

one of the faces of the wedge [7]. This fact is well-illustrated by

the results in Figures 5 and 6. In Figure 5 a ray is exactly grazinq

9h
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-EXACT SOLUTION
y OR

1. kC , f0 (0) S
X a o o DR

000,0 00 0 0 0000 0 000 00 0 00 0 0 0 0

1.0 A00

0  0IJ0 0
00

0.5k

90-

w
w
CC

S0-

90

-180,
0 1 2 3 4 5

X (WAVELENGTHS)

Figure 5. Current along x-wall for various combinations
of coefficients compared to exact solution.
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y EXACT SOLUTION
0 ! 'OR

900 D' " *o, D' 0
(0)

&A AA 2700 A A A D(-I) a D(0) 20

05 j "  " 0 0 A a y y

Io o0o 0 0 0 0 0 0 0 0 0 0 0 00o , -A,

o I ,I I I

180.

ISO

-90-

Mi

w

0-

4-90

- 8 II I I II

Figure 6. Current along y-wall for various combination of
coefficients compared to exact solution.
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upon the x wall of a wedge. Exact agreement is obtained when all terms

are used. However, if one or both of D0) and D(_1 1 are zero, the in-
x x

correct current magnitude is obtained although the phase is unaffected.

Figure 6 shows a ray exactly grazing upon the y wall in the "opposite"

direction. Similar observations to those made for Figure 5 can be made.

for Figure 6.

For the results generated above, typically the three match points

were located between a distance of 1X and 5X from the wedge edge for

a grazinq incidence case and between 0.5X and 5X for non-qrazinq inci-

dence cases. An objection has been raised [8] that in the grazing in-

cidence cases, the current would grow without limit due to the 1
x

term. Further investigation beyond [7] showed that this does not occur

out to and somewhat beyond the location of the most distant match point,

even when it is located several hundred wavelengths from the wedge edge.

Such a large distance is adequate for most problems of interest and

much more than adequate for the pyramid problem in the next section.

It should be noted that a slow rise in the current in a grazing inci-

dence case (e.g. Figure 4, 0=1750 case) is natural since the wave will

continually reinforce the current along the wall until some saturation

point is reached. Indeed it is the D(l) term that permits this physical

phenomena to occur in the calculations even though the numerical value

of 0)is always very small.
x

Figure 7 illustrates the behavior of the three coefficients with

incidence angle for a 300 wedge. Note that D(l) is always the smallest
x

coefficient except when € 1800, the grazing incidence case. In this

case the Dx  coefficient dominates as expected. Note too that when

* is not near IRO , the D coefficient dominates as one would ex-

pect, and that the D l) coefficient is from two to four orders of mag-

nitude lower.

14

~1 A



_-__ _-.__ _ _ _._ _.__ _

+

-I y ,. 30

- -+ 4. ,o
IDI ° / "

0
-- "

/ 0

D (0I)
- 0(0o ~) /

I,'o
0--@ D~' l)

S/ 0

"0

0

10-0

0 0 00 0 0 0 0 0 00 0O0CM 0 W v N 1 0 0 N v

* ( DEGREES )

Fiqure 7a. Variation of the numerical coefficient magnitudp
with incidence angle.

1.5

. ............



ISO

120

(-I loD( ) o...0,
0_-a D' 1 -1 -oo- °"Oo- .

60-

0

€/) #

120- o--o D--oog

000 Q 00 0 0 00000vW (a COt (a CO0W0 CM

IN

* DEGREES)

Fiqure 7h. Variation of the numerical coefficient phase
with incidence angile.

- 96
-116



In this paper, the extent of the MM region is X/2. A larger size

(e.g., IX) can be used if the number of expansion functions is propor-

tionately increased.

And finally, we should remark that although the results in this

section show the three term series in Equation (17) to be sufficient

in all cases, one could possibly conceive of a series with more terms.

However, such a series may be diverqent as is sometimes the case with

such asymptotic solutions.

The results in this section show that the three term series in

Equation (17) is certainly a correct one to use. In this problem we

were fortunate in having considerable knowledge about the known asymptotic

solution for the problem which we could look at to deduce the correct

series expression for the current. However, in the general useage of

the GTD-MM technique this would probably not be true which is one of

the points of this paper.

IV. THREE-SIDED PYRAMID FORMULATION

For the problem of scattering by a pyramid (i.e. a 3-dimensional

problem) as treated in this paper, each face of the four faces of the

3-sided pyramid (i.e. three sides plus base) is composed of two regions,

a GTD region and a M region along each of the three edges of any one

face as illustrated by Figure S. The current distribution on the sur-

faces is found hy solving the 2-dimensional wedge diffraction problem

once for each wedqe or a total of six times for the entire problem.

Thus the current in the GTD region is the superposition of the diffracted

currents from the three 2-dimensional solutions applicable to a particu-

lar face plus the currents due to the incident and reflected fields.

For example, the current in Figure 6 at point M in a GTD region is the

summation of the five currents Jd Jd, d, jt and jr. The first three

currents are due to diffraction from edges 1, 2 and 4 respectively while

17 V]



A

GTD
REGION

Figure 8. Pyramid faces with GTD and MM regions.

J and jr are due to the incident and reflected fields as discussed

in Section II.

The current along the edges of each face is obtained from the
corresponding 2-dimensional wedge diffraction solution (MM part) plus

the diffracted currents from the other 2 edges plus, of course, the

currents associated with the incident and reflected fields.

To obtain the scattered field we use the radiation integral for

the current in the MM recion as well as for the current in the GTD re-

oion. This is necessary because in the method used here, we can define

the "numerical diffraction coefficients" only on the faces of the object

(i.e., Dyramid) and not as a function of the anqle of the observation

ooint. Thus, it is necessary to use the current rather than use ray

tracing as is done in the usual use of the GTD.

* ! 18



:13

HII

k

:O-

N2
a\ 2

N N N 1 ~
4

Nn

J2 j

N 2

P 4 ,

Figure 9.Geometry for one face of the triangular pyramid. i

MENME;



The solution for the current obtained in the manner described

above constitutes a first step in the solution process that is probably

sufficient for most backscatter problems. A refinement (i.e. a second

step) will be discussed later. Note that the solution neglects multiple

diffractions from the edges and also neglects diffractions from the

three vertices on any given face. We will refer to the latter as tip

diffraction.

For bistatic scatterinq the effect of tip diffraction may be added

post facto to the scattered field obtained by integrating over the sur-

faces of the pyramid visible in the desired direction of the scattered

field. The tip diffracted field may be evaluated by using a tip dif-

fraction coefficient given by Keller, et al [9] which is also discussed

in [8]. The tip diffraction coefficient formula is for a plane corner

with two straight edges meeting at an angle and is of the form

C o (cose+cose')sin6

4 ( cosa-cosa')(cosb-cosb') (21)

where a and b are the angles between the incident field and the two

edges at the corner; a' and b' are the angles between the diffracted

field at the two edges; e and 9' are the angles between the normal to

the plane of the corner and the incident and diffracted rays; and 6

is the angle between the two edges. The perpendicular symbol in C,

denotes that only that transverse component of the incident electric

field which is not parallel to the plane of the corner is used to deter-

mine the tip diffracted field. The fact that the vertices in this

problem do not constitute plane corners is ignored in applying Equation

(21) since it may be argued that the non-plane nature of the vertices

is a negligible deviation for the tips on the pyramid. It will be seen
in the next section that inclusion of the tip diffracted field does

noticeably and favorably raise the level of the radar cross section

results at most aspect anglec but the scattering "pattern" is little

changed by the tip diffrac'ed field.

20
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Unfortunately there is at present no satisfactory vector electro-

magnetic diffraction coefficient available for corner diffraction.

We used Keller's formula for the transverse component of the incident

electric field without first investiqating the limitations of the formu-

la itself, if in fact there are any. Keller's formula gave quite qood

results over a wide ranqe of aspect angles. There is another formula

in 11 in Figures 118-120 due to the work of Felsen. This tip dif-

fraction formula is for cones and is restricted to small incidence anqles

with respect to the axis of the cone.

The tip diffraction contribution may be included in a different

or alternative manner. Using the tip diffraction coefficient in Equa-

tion (21) one can obtain a tip diffracted current contribution to the

current in the GTD region. Thus, at point M in Figure 9 there could

also be shown three tip diffracted rays giving rise to currents J12

is th diface curet 2ro
Jt24 and J 14 where, for example, Jt12 is the diffracted current from

the tip formed by edges 1 and 2. Nextone considers the current on

the surface in the immediate vicinity of each of the twelve tips to

be unknown. Using the now known current on each face (i.e. both in

the MM and GTD regions), one can generate an incident field at each

of the twelve tip reqions and employ Equation (2) to solve for the

current at and near each tip. This is the second step in solution

mentioned earlier in this section but not discussed in [12]. If this

step is carried out accurately, the same scattered field will be ob-

tained as when the tip diffracted field is added on post facto. How-

ever, including the tip diffraction contribution in the current oermits

a more accurate representation of the current than that obtained in

the first step. The second step described here is used in the next

section to obtain the plots of the current distribution.

21



V. THREE-SIDED PYRAMID RESULTS

In the results which follow for the 3-dimensional pyramid problem,

the edges numbered 1, 2, and 3 in Figure 9 are all of length q.144x

and make an angle of 150 with the z-axis.

Using the second step discussed in the previous section, the

maqnitude of the current distribution was obtained for the case where

a plane wave was normally incident upon edge 4 (see Figure 9) with the

magnetic field parallel to this edge. The current distributions are

shown on the three faces in Fiqures 10 and 11 and on the base in Fiqure

12. Although there was no reasonable way to verify the deqree of ac-

curacy of the current distributions, they appear reasonable, have the

anticipated behavior in the tip reqions, and do produce radar cross

section results that agree well with experimental measurements.

The number of pulse expression functions used in the MM region

was N=5. The current discontinuity at the boundary between the MM and

GTD regions is quite small, too small to be shown in the figures.

Figures 13 and 14 show bistatic radar cross section results when

the pyramid is rotated about the z-axis with the incident wave parallel

to the xy plane. Figure 13 is for the case where the E-field is parallel

to the xy plane (horizontal polarization) and Figure 14 is for the case

where the E-field is parallel to the z-axis (vertical polarization).

Results are shown both with and without tip diffraction. It is apparent

that the inclusion of tip diffraction improves the results at most aspect

anqles and in fact does brinq the results into very close agreement

with measurements made in the Ohio State University anechoic chamber.

The agreement between the calculations and measurements tends to validate

at least the qross accuracy with which the current distribution has
been obtained. Further RCS results may be found in [12]. Clearly we

could have obtained these RCS results solely usinq the UTD and Equation
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(21) but our purpose here has been to apply the extended GTD-MM tech-

nique to a 3-dimensional problem.

VI. SOME OBSERVATIONS

The GTD-MM technique permits one to solve for "unknown" diffraction

coefficients if one knows the form of the current in the GTD region.

In Section II we saw for the wedge that the obvious assumption that

the current in the GTO reqion varies as (p)- 1 2 is invalid in the grazing

incidence case. The assumption was corrected to include two other terms

which were suggested hv the mathematics associated with the known Fresnel

inteqral form of the diffraction coefficient. In retrospect we miqht

have been able to suggest those two additional terms from the physics

of the problem. In any case the work in Section II does illustrate

the need for good a priori knowledge of the form of the current in the

GTD region if the unknown diffraction coefficient is to be correctly

determined. In the future treatment of geometries for which the dif-

fraction coefficient is truly unknown, the need for a priori knowledge

of the form of the current in the GTD region may prove to be a limitation

on the use of the method in certain cases. In fact current work on

the vertex diffraction problem indicates the often stated assumption

that the current varies as (r) is incorrect near the vertex. Never-

theless, the GTD-MM technique does offer a useful procedure for numerically

obtaining diffraction coefficients whose analytical form is unknown.

The application of the GTD-MM technique in Section IV to a 3-dimen-

sional problem was based, for the most part, on a superposition of

2-dimensional suh-problems. It would not have been feasible to have

solved for all the MM currents on the pyramid simultaneously due to

the larqe matrix that would have resulted. Thus, a superposition of

?-dimensional sub-problems was essential. It may be noted that in

£2], Burnside, et al solved the problem of a cylinder with square cross

section by solving for the MM currents along all four edges simultaneously.

28



However, that problem was 2-dimensional. If we wished to solve the

finite length cylinder of square cross section (i.e. a 3-dimensional

problem) using the GTD-MM technique, it would be necessary to proceed

in a manner essentially identical to that used for the pyramid in this

paper.

Other problems might be considered by the techniques of Section

II and IV. For example, if the three sides of the pyramid were coated

with a dielectric material and, perhaps, the base was not, we could

1) solve the 2-dimensional problem of a wedge coated on either one or

both sides of the wedge with a dielectric using the GTD-MM technique

and 2) solve the coated or partially coated tip problem using the GTD-

MM technique, and then 3) superimpose these various 2-dimensional problems

to investigate the 3-dimensional coated pyramid problem. It is expected

that future developments in the GTD-MM technique will permit such complex

geometries to be treated.

29.
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